A quasi-linear approach for microarray missing value imputation

Yu Cheng*, Lan Wang, Jinglu Hu

*この研究の対応する著者

研究成果: Conference contribution

抄録

Missing value imputation for microarray data is important for gene expression analysis algorithms, such as clustering, classification and network design. A number of algorithms have been proposed to solve this problem, but most of them are only limited in linear analysis methods, such as including the estimation in the linear combination of other no-missing-value genes. It may result from the fact that microarray data often comprises of huge size of genes with only a small number of observations, and nonlinear regression techniques are prone to overfitting. In this paper, a quasi-linear SVR model is proposed to improve the linear approaches, and it can be explained in a piecewise linear interpolation way. Two real datasets are tested and experimental results show that the quasi-linear approach for missing value imputation outperforms both the linear and nonlinear approaches.

本文言語English
ホスト出版物のタイトルNeural Information Processing - 18th International Conference, ICONIP 2011, Proceedings
ページ233-240
ページ数8
PART 1
DOI
出版ステータスPublished - 2011
イベント18th International Conference on Neural Information Processing, ICONIP 2011 - Shanghai, China
継続期間: 2011 11月 132011 11月 17

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 1
7062 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference18th International Conference on Neural Information Processing, ICONIP 2011
国/地域China
CityShanghai
Period11/11/1311/11/17

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「A quasi-linear approach for microarray missing value imputation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル