TY - GEN
T1 - A regularity criterion for the Schrödinger map
AU - Fan, Jishan
AU - Ozawa, Tohru
N1 - Funding Information:
J. Fan is partially supported by NSFC (No. 11171154).
Publisher Copyright:
© 2015 Springer International Publishing Switzerland.
PY - 2015
Y1 - 2015
N2 - We prove a regularity criterion ∇u ∈ L2(0,T; BMO(ℝn)) with 2 ≤ n ≤ 5 for the Schrödinger map. Here BMO is the space of functions with bounded mean oscillations.
AB - We prove a regularity criterion ∇u ∈ L2(0,T; BMO(ℝn)) with 2 ≤ n ≤ 5 for the Schrödinger map. Here BMO is the space of functions with bounded mean oscillations.
KW - Landau-Lifshitz
KW - Regularity criterion
KW - Schrödinger map
UR - http://www.scopus.com/inward/record.url?scp=84959090749&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959090749&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-12577-0_26
DO - 10.1007/978-3-319-12577-0_26
M3 - Conference contribution
AN - SCOPUS:84959090749
SN - 9783319125763
T3 - Trends in Mathematics
SP - 217
EP - 223
BT - Current Trends in Analysis and Its Applications - Proceedings of the 9th ISAAC Congress, 2013
A2 - Mityushev, Vladimir V.
A2 - Ruzhansky, Michael V.
PB - Springer International Publishing
T2 - 9th International ISAAC Congress on Current Trends in Analysis and Its Applications, 2013
Y2 - 5 August 2013 through 9 August 2013
ER -