A Reinforcement Learning Method for Optical Thin-Film Design

Anqing Jiang, Osamu Yoshie*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Machine learning, especially deep learning, is dramatically changing the methods associated with optical thin-film inverse design. The vast majority of this research has focused on the parameter optimization (layer thickness, and structure size) of optical thin-films. A challenging problem that arises is an automated material search. In this work, we propose a new end-to-end algorithm for optical thin-film inverse design. This method combines the ability of unsupervised learning, reinforcement learning and includes a genetic algorithm to design an optical thin-film without any human intervention. Furthermore, with several concrete examples, we have shown how one can use this technique to optimize the spectra of a multi-layer solar absorber device.

本文言語English
ページ(範囲)95-101
ページ数7
ジャーナルIEICE Transactions on Electronics
E105.C
2
DOI
出版ステータスPublished - 2022 2月 1

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 電子工学および電気工学

フィンガープリント

「A Reinforcement Learning Method for Optical Thin-Film Design」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル