A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions

Hideo Kozono*, Yutaka Terasawa, Yuta Wakasugi

*この研究の対応する著者

研究成果: Article査読

51 被引用数 (Scopus)

抄録

Consider the 3D homogeneous stationary Navier–Stokes equations in the whole space R3. We deal with solutions vanishing at infinity in the class of the finite Dirichlet integral. By means of quantities having the same scaling property as the Dirichlet integral, we establish new a priori estimates. As an application, we prove the Liouville theorem in the marginal case of scaling invariance.

本文言語English
ページ(範囲)804-818
ページ数15
ジャーナルJournal of Functional Analysis
272
2
DOI
出版ステータスPublished - 2017 1月 15

ASJC Scopus subject areas

  • 分析

フィンガープリント

「A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル