A study on object detection method from manga images using CNN

Hideaki Yanagisawa, Takuro Yamashita, Hiroshi Watanabe

研究成果: Conference contribution

45 被引用数 (Scopus)

抄録

Japanese comics (manga) are popular content worldwide. In order to acquire metadata from manga images, techniques automatic recognition of manga content have been studied. Recently, Convolutional Neural Network (CNN) has been applied to object detection in manga images. R-CNN and Fast R-CNN generate region proposals by Selective Search. Faster R-CNN generates them using CNN layers called Region Proposal Network (RPN). Single Shot MultiBox Detector (SSD), the latest detection method, performs object classification and box adjustment for small regions in an image. These methods are effective to natural images. However, it is unclear whether such methods work properly to manga images or not, since those image features are different from natural images. In this paper, we examine the effectiveness of manga object detection by comparing Fast R-CNN, Faster R-CNN, and SSD. Here, manga objects are panel layout, speech balloon, character face, and text. Experimental results show that Fast R-CNN is effective for panel layout and speech balloon, whereas Faster R-CNN is effective for character face and text.

本文言語English
ホスト出版物のタイトル2018 International Workshop on Advanced Image Technology, IWAIT 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1-4
ページ数4
ISBN(電子版)9781538626153
DOI
出版ステータスPublished - 2018 5月 30
イベント2018 International Workshop on Advanced Image Technology, IWAIT 2018 - Chiang Mai, Thailand
継続期間: 2018 1月 72018 1月 9

出版物シリーズ

名前2018 International Workshop on Advanced Image Technology, IWAIT 2018

Other

Other2018 International Workshop on Advanced Image Technology, IWAIT 2018
国/地域Thailand
CityChiang Mai
Period18/1/718/1/9

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識
  • メディア記述

フィンガープリント

「A study on object detection method from manga images using CNN」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル