A two-Phase method of qos prediction for situated service recommendation

Jiapeng Dai, Donghui Lin, Toru Ishida

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

With the rapid growth of Web services, recommending suitable services to users has become a big challenge. The existing service recommendation works by Quality of Service (QoS) prediction fail to fully consider the influence of situation information, such as time, location, and user relations thoroughly. Two issues must be resolved to consider situation information: issue one, rating scarcity, is that there are less data to learn when importing more situations; issue two is that an effective approach is needed to adapt many situational factors. Our solution is a two-phase method: first, to overcome rating scarcity, data is augmented with estimations of unknown QoS values by learning from observable factors. The augmented data is then used to learn the important latent factors associated with the situational factors for QoS prediction. Experiments on data of real service invocations in different situations show improvement of our method in terms of QoS prediction accuracy over several existing methods, especially in the severe rating scarcity condition. In addition, analysis on parameter selection of proposed method can further assist in obtaining better QoS prediction in practical use.

本文言語English
ホスト出版物のタイトルProceedings - 2018 IEEE International Conference on Services Computing, SCC 2018 - Part of the 2018 IEEE World Congress on Services
出版社Institute of Electrical and Electronics Engineers Inc.
ページ137-144
ページ数8
ISBN(印刷版)9781538672501
DOI
出版ステータスPublished - 2018 9月 5
外部発表はい
イベント2018 IEEE International Conference on Services Computing, SCC 2018 - San Francisco, United States
継続期間: 2018 7月 22018 7月 7

出版物シリーズ

名前Proceedings - 2018 IEEE International Conference on Services Computing, SCC 2018 - Part of the 2018 IEEE World Congress on Services

Conference

Conference2018 IEEE International Conference on Services Computing, SCC 2018
国/地域United States
CitySan Francisco
Period18/7/218/7/7

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 情報システムおよび情報管理

フィンガープリント

「A two-Phase method of qos prediction for situated service recommendation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル