TY - JOUR
T1 - A two-stage point pattern matching algorithm using ellipse fitting and dual Hilbert Scans
AU - Tian, Li
AU - Kamata, Sei Ichiro
PY - 2008/10
Y1 - 2008/10
N2 - Point Pattern Matching (PPM) is an essential problem in many image analysis and computer vision tasks. This paper presents a two-stage algorithm for PPM problem using ellipse fitting and dual Hilbert scans. In the first matching stage, transformation parameters are coarsely estimated by using four node points of ellipses which are fitted by Weighted Least Square Fitting (WLSF). Then, Hilbert scans are used in two aspects of the second matching stage: it is applied to the similarity measure and it is also used for search space reduction. The similarity measure named Hilbert Scanning Distance (HSD) can be computed fast by converting the 2-D coordinates of 2-D points into 1-D space information using Hilbert scan. On the other hand, the N-D search space can be converted to a 1-D search space sequence by N-D Hilbert Scan and an efficient search strategy is proposed on the 1-D search space sequence. In the experiments, we use both simulated point set data and real fingerprint images to evaluate the performance of our algorithm, and our algorithm gives satisfying results both in accuracy and efficiency.
AB - Point Pattern Matching (PPM) is an essential problem in many image analysis and computer vision tasks. This paper presents a two-stage algorithm for PPM problem using ellipse fitting and dual Hilbert scans. In the first matching stage, transformation parameters are coarsely estimated by using four node points of ellipses which are fitted by Weighted Least Square Fitting (WLSF). Then, Hilbert scans are used in two aspects of the second matching stage: it is applied to the similarity measure and it is also used for search space reduction. The similarity measure named Hilbert Scanning Distance (HSD) can be computed fast by converting the 2-D coordinates of 2-D points into 1-D space information using Hilbert scan. On the other hand, the N-D search space can be converted to a 1-D search space sequence by N-D Hilbert Scan and an efficient search strategy is proposed on the 1-D search space sequence. In the experiments, we use both simulated point set data and real fingerprint images to evaluate the performance of our algorithm, and our algorithm gives satisfying results both in accuracy and efficiency.
KW - Ellipse fitting
KW - HILBERT scan
KW - Point pattern matching
KW - Search space reduction
KW - Transformation parameter estimation
UR - http://www.scopus.com/inward/record.url?scp=68849088189&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68849088189&partnerID=8YFLogxK
U2 - 10.1093/ietisy/e91-d.10.2477
DO - 10.1093/ietisy/e91-d.10.2477
M3 - Article
AN - SCOPUS:68849088189
SN - 0916-8532
VL - E91-D
SP - 2477
EP - 2484
JO - IEICE Transactions on Information and Systems
JF - IEICE Transactions on Information and Systems
IS - 10
ER -