A two-stage point pattern matching algorithm using ellipse fitting and dual Hilbert Scans

Li Tian*, Sei Ichiro Kamata

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

Point Pattern Matching (PPM) is an essential problem in many image analysis and computer vision tasks. This paper presents a two-stage algorithm for PPM problem using ellipse fitting and dual Hilbert scans. In the first matching stage, transformation parameters are coarsely estimated by using four node points of ellipses which are fitted by Weighted Least Square Fitting (WLSF). Then, Hilbert scans are used in two aspects of the second matching stage: it is applied to the similarity measure and it is also used for search space reduction. The similarity measure named Hilbert Scanning Distance (HSD) can be computed fast by converting the 2-D coordinates of 2-D points into 1-D space information using Hilbert scan. On the other hand, the N-D search space can be converted to a 1-D search space sequence by N-D Hilbert Scan and an efficient search strategy is proposed on the 1-D search space sequence. In the experiments, we use both simulated point set data and real fingerprint images to evaluate the performance of our algorithm, and our algorithm gives satisfying results both in accuracy and efficiency.

本文言語English
ページ(範囲)2477-2484
ページ数8
ジャーナルIEICE Transactions on Information and Systems
E91-D
10
DOI
出版ステータスPublished - 2008 10月

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「A two-stage point pattern matching algorithm using ellipse fitting and dual Hilbert Scans」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル