Abelian quotients of the string link monoid

Jean Baptiste Meilhan, Akira Yasuhara

研究成果: Article査読

抄録

The set SL(n) of n-string links has a monoid structure, given by the stacking product. When considered up to concordance, SL(n) becomes a group, which is known to be abelian only if nD1. In this paper, we consider two families of equivalence relations which endow SL. (n) with a group structure, namely the Ck-equivalence introduced by Habiro in connection with finite-type invariants theory, and the Ck-concordance, which is generated by Ck-equivalence and concordance. We investigate under which condition these groups are abelian, and give applications to finite-type invariants.

本文言語English
ページ(範囲)1461-1488
ページ数28
ジャーナルAlgebraic and Geometric Topology
14
3
DOI
出版ステータスPublished - 2014 4月 7
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Abelian quotients of the string link monoid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル