TY - JOUR
T1 - Accuracy of 12 wearable devices for estimating physical activity energy expenditure using a metabolic chamber and the doubly labeled water method
T2 - Validation study
AU - Murakami, Haruka
AU - Kawakami, Ryoko
AU - Nakae, Satoshi
AU - Yamada, Yosuke
AU - Nakata, Yoshio
AU - Ohkawara, Kazunori
AU - Sasai, Hiroyuki
AU - Ishikawa-Takata, Kazuko
AU - Tanaka, Shigeho
AU - Miyachi, Motohiko
N1 - Publisher Copyright:
© 2019 JMIR Publications. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Background: Self-monitoring using certain types of pedometers and accelerometers has been reported to be effective for promoting and maintaining physical activity (PA). However, the validity of estimating the level of PA or PA energy expenditure (PAEE) for general consumers using wearable devices has not been sufficiently established. Objective: We examined the validity of 12 wearable devices for determining PAEE during 1 standardized day in a metabolic chamber and 15 free-living days using the doubly labeled water (DLW) method. Methods: A total of 19 healthy adults aged 21 to 50 years (9 men and 10 women) participated in this study. They followed a standardized PA protocol in a metabolic chamber for an entire day while simultaneously wearing 12 wearable devices: 5 devices on the waist, 5 on the wrist, and 2 placed in the pocket. In addition, they spent their daily lives wearing 12 wearable devices under free-living conditions while being subjected to the DLW method for 15 days. The PAEE criterion was calculated by subtracting the basal metabolic rate measured by the metabolic chamber and 0.1×total energy expenditure (TEE) from TEE. The TEE was obtained by the metabolic chamber and DLW methods. The PAEE values of wearable devices were also extracted or calculated from each mobile phone app or website. The Dunnett test and Pearson and Spearman correlation coefficients were used to examine the variables estimated by wearable devices. Results: On the standardized day, the PAEE estimated using the metabolic chamber (PAEEcha) was 528.8±149.4 kcal/day. The PAEEs of all devices except the TANITA AM-160 (513.8±135.0 kcal/day; P>.05), SUZUKEN Lifecorder EX (519.3±89.3 kcal/day; P>.05), and Panasonic Actimarker (545.9±141.7 kcal/day; P>.05) were significantly different from the PAEEcha. None of the devices was correlated with PAEEcha according to both Pearson (r=−.13 to .37) and Spearman (ρ=−.25 to .46) correlation tests. During the 15 free-living days, the PAEE estimated by DLW (PAEEdlw) was 728.0±162.7 kcal/day. PAEE values of all devices except the Omron Active style Pro (716.2±159.0 kcal/day; P>.05) and Omron CaloriScan (707.5±172.7 kcal/day; P>.05) were significantly underestimated. Only 2 devices, the Omron Active style Pro (r=.46; P=.045) and Panasonic Actimarker (r=.48; P=.04), had significant positive correlations with PAEEdlw according to Pearson tests. In addition, 3 devices, the TANITA AM-160 (ρ=.50; P=.03), Omron CaloriScan (ρ=.48; P=.04), and Omron Active style Pro (ρ=.48; P=.04), could be ranked in PAEEdlw. Conclusions: Most wearable devices do not provide comparable PAEE estimates when using gold standard methods during 1 standardized day or 15 free-living days. Continuous development and evaluations of these wearable devices are needed for better estimations of PAEE.
AB - Background: Self-monitoring using certain types of pedometers and accelerometers has been reported to be effective for promoting and maintaining physical activity (PA). However, the validity of estimating the level of PA or PA energy expenditure (PAEE) for general consumers using wearable devices has not been sufficiently established. Objective: We examined the validity of 12 wearable devices for determining PAEE during 1 standardized day in a metabolic chamber and 15 free-living days using the doubly labeled water (DLW) method. Methods: A total of 19 healthy adults aged 21 to 50 years (9 men and 10 women) participated in this study. They followed a standardized PA protocol in a metabolic chamber for an entire day while simultaneously wearing 12 wearable devices: 5 devices on the waist, 5 on the wrist, and 2 placed in the pocket. In addition, they spent their daily lives wearing 12 wearable devices under free-living conditions while being subjected to the DLW method for 15 days. The PAEE criterion was calculated by subtracting the basal metabolic rate measured by the metabolic chamber and 0.1×total energy expenditure (TEE) from TEE. The TEE was obtained by the metabolic chamber and DLW methods. The PAEE values of wearable devices were also extracted or calculated from each mobile phone app or website. The Dunnett test and Pearson and Spearman correlation coefficients were used to examine the variables estimated by wearable devices. Results: On the standardized day, the PAEE estimated using the metabolic chamber (PAEEcha) was 528.8±149.4 kcal/day. The PAEEs of all devices except the TANITA AM-160 (513.8±135.0 kcal/day; P>.05), SUZUKEN Lifecorder EX (519.3±89.3 kcal/day; P>.05), and Panasonic Actimarker (545.9±141.7 kcal/day; P>.05) were significantly different from the PAEEcha. None of the devices was correlated with PAEEcha according to both Pearson (r=−.13 to .37) and Spearman (ρ=−.25 to .46) correlation tests. During the 15 free-living days, the PAEE estimated by DLW (PAEEdlw) was 728.0±162.7 kcal/day. PAEE values of all devices except the Omron Active style Pro (716.2±159.0 kcal/day; P>.05) and Omron CaloriScan (707.5±172.7 kcal/day; P>.05) were significantly underestimated. Only 2 devices, the Omron Active style Pro (r=.46; P=.045) and Panasonic Actimarker (r=.48; P=.04), had significant positive correlations with PAEEdlw according to Pearson tests. In addition, 3 devices, the TANITA AM-160 (ρ=.50; P=.03), Omron CaloriScan (ρ=.48; P=.04), and Omron Active style Pro (ρ=.48; P=.04), could be ranked in PAEEdlw. Conclusions: Most wearable devices do not provide comparable PAEE estimates when using gold standard methods during 1 standardized day or 15 free-living days. Continuous development and evaluations of these wearable devices are needed for better estimations of PAEE.
KW - Accelerometry
KW - Doubly labeled water
KW - Energy expenditure
KW - Indirect calorimetry
KW - Physical activity
UR - http://www.scopus.com/inward/record.url?scp=85071453684&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071453684&partnerID=8YFLogxK
U2 - 10.2196/13938
DO - 10.2196/13938
M3 - Article
C2 - 31376273
AN - SCOPUS:85071453684
SN - 2291-5222
VL - 7
JO - JMIR mHealth and uHealth
JF - JMIR mHealth and uHealth
IS - 8
M1 - 13938
ER -