抄録
Conducting polymers are envisioned to play a significant role in the development of organic matter based electrical energy conversion and storage systems. However, successful utilization of conducting polymers relies on a fundamental understanding of their inherent possibilities and limitations. In this report we studied the temperature dependence of the self-discharge in polypyrrole and show that the rate of self-discharge is kinetically controlled by a polymer intrinsic endergonic electron transfer reaction forming a reactive intermediate. We further show that this intermediate is intimately linked to a process known as overoxidation. This process is general for most, if not all, p-doped conducting polymers irrespective of medium. The results herein are therefore expected to significantly impact the development of future energy storage systems with conducting polymer based components.
本文言語 | English |
---|---|
ページ(範囲) | 29643-29649 |
ページ数 | 7 |
ジャーナル | Journal of Physical Chemistry C |
巻 | 118 |
号 | 51 |
DOI | |
出版ステータス | Published - 2014 12月 26 |
外部発表 | はい |
ASJC Scopus subject areas
- 電子材料、光学材料、および磁性材料
- エネルギー(全般)
- 物理化学および理論化学
- 表面、皮膜および薄膜