Adaptive Sampling for Monte-Carlo Event Imagery Rendering

Yuichiro Manabe, Tatsuya Yatagawa, Shigeo Morishima, Hiroyuki Kubo

研究成果: Conference contribution

抄録

This paper presents a novel event-based camera simulation system based on physically accurate Monte Carlo path tracing with adaptive path sampling. The adaptive sampling performed in the proposed method is based on the probability of event occurrence. First, our rendering system collects logarithmic luminances rather than raw luminance based on the circuit characteristics of event-based cameras. We calculate the probability of how much different the logarithmic luminance gap is from the preset event threshold. This means how likely an event will occur at the pixel. Then, we sample paths adaptively based on the sample rate combined with a previous adaptive sampling method. We demonstrate that our method achieves higher rendering quality than the baseline approach which allocates path samples uniformly for each pixel.

本文言語English
ホスト出版物のタイトルProceedings - SIGGRAPH 2024 Posters
編集者Stephen N. Spencer
出版社Association for Computing Machinery, Inc
ISBN(電子版)9798400705168
DOI
出版ステータスPublished - 2024 7月 25
イベントSIGGRAPH 2024 Posters - Denver, United States
継続期間: 2024 7月 282024 8月 1

出版物シリーズ

名前Proceedings - SIGGRAPH 2024 Posters

Conference

ConferenceSIGGRAPH 2024 Posters
国/地域United States
CityDenver
Period24/7/2824/8/1

ASJC Scopus subject areas

  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Adaptive Sampling for Monte-Carlo Event Imagery Rendering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル