Advanced computational models and learning theories for spoken language processing

Atsushi Nakamura*, Shinji Watanabe, Takaaki Hori, Erik McDermott, Shigeru Katagiri

*この研究の対応する著者

研究成果: Review article査読

2 被引用数 (Scopus)

抄録

Various methods for fast search through finite-state machines, Bayesian solutions for modeling and classification of speech, and a training approach for minimizing errors in large vocabulary continuous speech recognition (LVCSR) technology are discussed. The development of effective speech recognition decoders requires understanding software programming skills and sufficient understanding of LVCSR technology. The weighted finite-state transducer (WFST) framework provides an alternative to LVCSR and enables efficient global optimization of the search space and a one-pass decoding over the speech input using all knowledge simultaneously. The MCE-based training framework is extended to make full use of WFST to obtain directly model word accuracy.

本文言語English
ページ(範囲)5-9+26
ジャーナルIEEE Computational Intelligence Magazine
1
2
出版ステータスPublished - 2006 5月
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 人工知能

フィンガープリント

「Advanced computational models and learning theories for spoken language processing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル