Almost Gorenstein Rees algebras of pg-ideals, good ideals, and powers of the maximal ideals

Shiro Goto, Naoyuki Matsuoka, Naoki Taniguchi, Ken Ichi Yoshida

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Let (A,m) be a Cohen-Macaulay local ring, and let I be an ideal of A. We prove that the Rees algebra R(I) is an almost Gorenstein ring in the following cases: (1) (A, m) is a two-dimensional excellent Gorenstein normal domain over an algebraically closed field K ≅ A/m, and I is a pg-ideal; (2) (A, m) is a two-dimensional almost Gorenstein local ring having minimal multiplicity, and I =ml for all l ≥ 1; (3) (A,m) is a regular local ring of dimension d ≥ 2, and I = md-1. Conversely, if R(ml) is an almost Gorenstein graded ring for some l ≥ 2 and d ≥ 3, then l = d - 1.

本文言語English
ページ(範囲)159-174
ページ数16
ジャーナルMichigan Mathematical Journal
67
1
出版ステータスPublished - 2018 3月 1

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Almost Gorenstein Rees algebras of pg-ideals, good ideals, and powers of the maximal ideals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル