抄録
We investigate the accuracy of two-component Douglas-Kroll-Hess (DKH) methods in calculations of the nuclear volume term (≡ lnKnv) in the isotope fractionation coefficient. lnKnv is a main term in the chemical equilibrium constant for isotope exchange reactions in heavy element. Previous work based on the four-component method reasonably reproduced experimental lnKnv values of uranium isotope exchange. In this work, we compared uranium reaction lnKnv values obtained from the two-component and four-component methods. We find that both higher-order relativistic interactions and spin-orbit interactions are essential for quantitative description of lnKnv. The best alternative is the infinite-order Douglas-Kroll-Hess method with infinite-order spin-orbit interactions for the one-electron term and atomic-mean-field spin-same-orbit interaction for the two-electron term (IODKH-IOSO-MFSO). This approach provides almost equivalent results for the four-component method, while being 30 times faster. The IODKH-IOSO-MFSO methodology should pave the way toward computing larger and more general molecules beyond the four-component method limits.
本文言語 | English |
---|---|
ページ(範囲) | 816-820 |
ページ数 | 5 |
ジャーナル | Journal of Computational Chemistry |
巻 | 36 |
号 | 11 |
DOI | |
出版ステータス | Published - 2015 4月 30 |
ASJC Scopus subject areas
- 化学 (全般)
- 計算数学