An address generator for an N-dimensional pseudo-Hilbert scan in a hyper-rectangular parallelepiped region

Y. Bandoh*, S. Kamata

*この研究の対応する著者

研究成果: Paper査読

4 被引用数 (Scopus)

抄録

Hilbert curve is a one-to-one mapping between N- dimensional (N-D) space and 1-D space. The Hilbert curve has been applied to image processing as a scanning technique (Hilbert Scan). Recently applications to multi-dimensional image processing are also studied. In this application, we use N-D Hilbert scan which maps N-D data to 1-D data along N-D Hilbert curve. However, N-D Hilbert scan is the application limited to data in a hyper-cube region. In this paper, we present a novel algorithm for generating N-D pseudo-Hilbert curves in a hyper-rectangular parallelepiped region. Our algorithm is suitable for real-time processing and easy to implement in hardware, since it is a simple and non-recursive computation using look-up tables.

本文言語English
ページ737-740
ページ数4
出版ステータスPublished - 2000 12月 1
外部発表はい
イベントInternational Conference on Image Processing (ICIP 2000) - Vancouver, BC, Canada
継続期間: 2000 9月 102000 9月 13

Conference

ConferenceInternational Conference on Image Processing (ICIP 2000)
国/地域Canada
CityVancouver, BC
Period00/9/1000/9/13

ASJC Scopus subject areas

  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学

フィンガープリント

「An address generator for an N-dimensional pseudo-Hilbert scan in a hyper-rectangular parallelepiped region」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル