An algorithm for automatically discovering dynamical rules of adaptive network evolution from empirical data

Hiroki Sayama*

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

An algorithm is proposed for automatic discovery of a set of dynamical rules that best captures both state transition and topological transformation in the empirical data showing time evolution of adaptive networks. Graph rewriting systems are used as the basic model framework to represent state transition and topological transformation simultaneously. Network evolution is formulated in two phases: extraction and replacement of subnetworks. For each phase, multiple methods of rule discovery are proposed and will be explored. This paper reports the basic architecture of the algorithm, as well as its implementation and evaluation plan.

本文言語English
ホスト出版物のタイトルBio-Inspired Models of Network, Information, and Computing Systems - 5th International ICST Conference, BIONETICS 2010, Revised Selected Papers
ページ497-504
ページ数8
DOI
出版ステータスPublished - 2012
外部発表はい
イベント5th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems, BIONETICS 2010 - Boston, MA, United States
継続期間: 2010 12月 12010 12月 3

出版物シリーズ

名前Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
87 LNICST
ISSN(印刷版)1867-8211

Other

Other5th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems, BIONETICS 2010
国/地域United States
CityBoston, MA
Period10/12/110/12/3

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信

フィンガープリント

「An algorithm for automatically discovering dynamical rules of adaptive network evolution from empirical data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル