An approach based on wavelet analysis and hidden markov models for behavior understanding

Qian Tian*, Noriyoshi Yamauchi

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This paper proposes a novel parallel structure and an individual multibehavior module which is based on hidden Markov models (HMM) to extract behavior features. In the parallel structure, the wavelet de-noising method is employed to preprocess data and provide the robust training data. Then, the individual multi-behavior module is built to analyze multi-sensor signals to obtain the behavior features. The experimental results show that this method is useful for behavior understanding such as sleeping, for which the matched probability is up to 90%.

本文言語English
ページ(範囲)1645-1650
ページ数6
ジャーナルICIC Express Letters, Part B: Applications
3
6
出版ステータスPublished - 2012 12月 13

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)

フィンガープリント

「An approach based on wavelet analysis and hidden markov models for behavior understanding」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル