An approach to global localization problem using mean shift algorithm

Giovanni Muscato, Salvatore Sessa

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper describes a global localization algorithm (GLA) for a mobile robot in indoor environments, based on a particle filter. This algorithm uses data obtained by two kinds of sensors: encoder and scanner laser. Given a map of the environment, where the robot moves, a GLA tries to localize the robot on the map by using its sensor data. The map of the environment is preliminary built mixing laser readings from well-known poses of the robot. The mean shift algorithm (MSA) processes the map and obtains a list of features, which is the synthetic map of the environment used in the GLA. The MSA is also applied for each sampling step in order to calculate the importance factor of the particles. The trials have been performed by using a dynamic simulator of a differential drive robot and the 3Morduc mobile robot.

本文言語English
ホスト出版物のタイトルAdvances in Climbing and Walking Robots - Proceedings of 10th International Conference, CLAWAR 2007
出版社World Scientific Publishing Co. Pte Ltd
ページ565-574
ページ数10
ISBN(印刷版)9812708154, 9789812708151
出版ステータスPublished - 2007
外部発表はい
イベント10th International Conference on Climbing and Walking Robots, CLAWAR 2007 - Singapore
継続期間: 2007 7月 162007 7月 18

Other

Other10th International Conference on Climbing and Walking Robots, CLAWAR 2007
CitySingapore
Period07/7/1607/7/18

ASJC Scopus subject areas

  • 人工知能
  • 人間とコンピュータの相互作用

フィンガープリント

「An approach to global localization problem using mean shift algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル