An Area-Power-Efficient Multiplier-less Processing Element Design for CNN Accelerators

Jiaxiang Li*, Masao Yanagisawa, Youhua Shi

*この研究の対応する著者

研究成果: Conference contribution

抄録

Machine learning has achieved remarkable success in various domains. However, the computational demands and memory requirements of these models pose challenges for deployment on privacy-secured or wearable edge devices. To address this issue, we propose an area-power-efficient multiplier-less processing element (PE) in this paper. Prior to implementing the proposed PE, we apply a power-of-2 dictionary-based quantization to the model. We analyze the effectiveness of this quantization method in preserving the accuracy of the original model and present the standard and a specialized diagram illustrating the schematics of the proposed PE. Our evaluation results demonstrate that our design achieves approximately 30% lower power consumption and 35% smaller core area compared to a conventional multiplication-and-accumulation (MAC) PE. Moreover, the applied quantization reduces the model size and operand bit-width, resulting in reduced on-chip memory usage and energy consumption for memory accesses.

本文言語English
ホスト出版物のタイトルProceedings of 2023 IEEE 15th International Conference on ASIC, ASICON 2023
編集者Fan Ye, Ting-Ao Tang
出版社IEEE Computer Society
ISBN(電子版)9798350312980
DOI
出版ステータスPublished - 2023
イベント15th IEEE International Conference on ASIC, ASICON 2023 - Nanjing, China
継続期間: 2023 10月 242023 10月 27

出版物シリーズ

名前Proceedings of International Conference on ASIC
ISSN(印刷版)2162-7541
ISSN(電子版)2162-755X

Conference

Conference15th IEEE International Conference on ASIC, ASICON 2023
国/地域China
CityNanjing
Period23/10/2423/10/27

ASJC Scopus subject areas

  • ハードウェアとアーキテクチャ
  • 電子工学および電気工学

フィンガープリント

「An Area-Power-Efficient Multiplier-less Processing Element Design for CNN Accelerators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル