An article retrieval support system that learns user's Kansei

Yuichi Murakami*, Shingo Nakamura, Shuji Hashimoto

*この研究の対応する著者

    研究成果: Conference contribution

    1 被引用数 (Scopus)

    抄録

    Most of article retrieval systems using retrieval criteria of Kansei words have a gap between user's Kansei and system's Kansei model. Therefore, it is not always easy to retrieve the desired articles efficiently according to the user's preference. This paper proposed a system to retrieve the desired articles quickly and intuitively from the database. To achieve this aim, dimension of the retrieval space is compressed by a torus SOM (Self Organizing Maps), and a user can move in the retrieval space panoramically. A user can also choose an elimination method during search. By this method, the system estimates the significant Kansei parameters and makes the search more efficient. The system also has a function to eliminate the unselected articles and reduces the size of SOM. Additionally, the system learns the Kansei of individual user from the retrieval results by using neural networks. In evaluation experiments, we took actual painting as article, and confirmed the efficacy of the proposed method.

    本文言語English
    ホスト出版物のタイトルProceedings - 2010 International Conference on User Science and Engineering, i-USEr 2010
    ページ32-37
    ページ数6
    DOI
    出版ステータスPublished - 2010
    イベント1st International Conference on User Science and Engineering 2010, iUSEr 2010 - Shah Alam
    継続期間: 2010 12月 132010 12月 15

    Other

    Other1st International Conference on User Science and Engineering 2010, iUSEr 2010
    CityShah Alam
    Period10/12/1310/12/15

    ASJC Scopus subject areas

    • コンピュータ ネットワークおよび通信
    • 人間とコンピュータの相互作用
    • ソフトウェア

    フィンガープリント

    「An article retrieval support system that learns user's Kansei」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル