An asymptotic analysis for Hamilton-Jacobi equations with large Hamiltonian drift terms

Taiga Kumagai*

*この研究の対応する著者

    研究成果: Article査読

    抄録

    We investigate the asymptotic behavior of solutions of Hamilton-Jacobi equations with large Hamiltonian drift terms in an open subset of the two-dimensional Euclidean space. The drift is given by ϵ - 1 ( H x 2 , - H x 1 ) -1(H2,-Hx1) of a Hamiltonian H, with ϵ > 0 >0 . We establish the convergence, as ϵ → 0 + to 0+ , of solutions of the Hamilton-Jacobi equations and identify the limit of the solutions as the solution of systems of ordinary differential equations on a graph. This result generalizes the previous one obtained by the author to the case where the Hamiltonian H admits a degenerate critical point and, as a consequence, the graph may have more than four segments at a node.

    本文言語English
    ジャーナルUnknown Journal
    DOI
    出版ステータスAccepted/In press - 2017 11月 14

    ASJC Scopus subject areas

    • 分析
    • 応用数学

    フィンガープリント

    「An asymptotic analysis for Hamilton-Jacobi equations with large Hamiltonian drift terms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル