抄録
A new development in the Bogolubov-Mitropolski method for solving nonlinear differential equations of motion for systems with finite degrees of freedom with coupled deflection is presented. A function is introduced which takes into account the influence of small nonlinearities on the amplitude ratio and on the perturbation of the phase angle. The results obtained by the method for several systems of two bodies exhibiting coupled deflection are compared with results obtained by the classical Bogolubov-Mitropolski method and with exact solutions (where possible). The comparison illustrates and confirms the effectiveness of the method.
本文言語 | English |
---|---|
ページ(範囲) | 71-83 |
ページ数 | 13 |
ジャーナル | Journal of the Franklin Institute |
巻 | 328 |
号 | 1 |
DOI | |
出版ステータス | Published - 1991 |
ASJC Scopus subject areas
- 信号処理
- 情報システムおよび情報管理
- 制御およびシステム工学
- 電子工学および電気工学
- 応用数学
- 制御と最適化
- モデリングとシミュレーション