An axiomatization of the Shapley mapping using strong monotonicity in interval games

Shinichi Ishihara, Junnosuke Shino*

*この研究の対応する著者

研究成果: Article査読

抄録

Interval games are an extension of cooperative coalitional games in which players are assumed to face payoff uncertainty. Characteristic functions thus assign a closed interval instead of a real number. In this paper, we focus on interval game versions of Shapley values. First, we modify Young’s strong monotonicity axiom for coalitional games into two versions so that they can be applied to the Shapley mapping and show that this can be axiomatized within the entire class of interval games using either version. Second, we derive the Shapley mapping for specific examples by employing two approaches used in the proof of the axiomatization and argue that our approach effectively works for a wide range of interval games.

本文言語English
ページ(範囲)147-168
ページ数22
ジャーナルAnnals of Operations Research
345
1
DOI
出版ステータスPublished - 2025 2月

ASJC Scopus subject areas

  • 決定科学一般
  • 経営科学およびオペレーションズ リサーチ

フィンガープリント

「An axiomatization of the Shapley mapping using strong monotonicity in interval games」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル