An elementary construction of complex patterns in nonlinear schrödinger equations

Manuel Del Pino*, Patrido Felmer, Kazunaga Tanaka

*この研究の対応する著者

研究成果: Article査読

21 被引用数 (Scopus)

抄録

We consider the problem of finding standing waves to a nonlinear Schrödinger equation. This leads to searching for solutions of the equation -ε2u″ + V(x)u = |u|p-1u in R, p > 1, when s is a small parameter. Given any finite set of points x1 < X2 < ⋯ < xm constituted by isolated local maxima or minima of V, and corresponding arbitrary integers n i, i = 1,..., m, we prove that there is a finite energy solution exhibiting a cluster of n/ spikes concentrating around each xi as ε → 0. The clusters consist of spikes with alternating sign if the point is a minimum, and of constant sign if it is a maximum. This construction extends to infinitely many clusters of spikes under appropriate conditions. The proof follows an elementary variational matching approach, which resembles the so-called broken-geodesic method.

本文言語English
ページ(範囲)1653-1671
ページ数19
ジャーナルNonlinearity
15
5
DOI
出版ステータスPublished - 2002 9月 1

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「An elementary construction of complex patterns in nonlinear schrödinger equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル