An improved multi-label classification method and its application to functional genomics

Benhui Chen, Weifeng Gu, Jinglu Hu*

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

In this paper, a multi-label classification method based on label ranking and delicate boundary Support Vector Machine (SVM) is proposed for solving the functional genomics applications. Firstly, an improved probabilistic SVM with delicate decision boundary is used as scoring approach to obtain a proper label rank. Secondly, an instance-dependent thresholding strategy is proposed to decide classification results. A d-folds validation approach is utilised to determine a set of target thresholds for all training samples as teachers, then an appropriate instance-dependent threshold for each testing instance is obtained by applying k-Nearest Neighbours (KNN) strategy on this teacher threshold set.

本文言語English
ページ(範囲)133-145
ページ数13
ジャーナルInternational journal of computational biology and drug design
3
2
DOI
出版ステータスPublished - 2010 9月

ASJC Scopus subject areas

  • 創薬
  • コンピュータ サイエンスの応用

フィンガープリント

「An improved multi-label classification method and its application to functional genomics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル