An improved multi-label classification method based on svm with delicate decision boundary

Benhui Chen*, Liangpeng Ma, Jinglu Hu


研究成果: Article査読

16 被引用数 (Scopus)


Multi-label classification problem is an extension of traditional multi-class classification problem in which the classes are not mutually exclusive and each sample may belong to several classes simultanrously. Such problems occur in many important applications. Some researches indicate that the performance of classifier can be improved by introducing The information of multi-lahrl training samples into learning procedure effectively. In this paper, we propose a novel method based on SVM with delicate decision boundary. For Thr basic overlapping problem of two lahrls. characteristics of douhlelabel samples arc utilized to obtain Thr range of overlapping sample space decided by two binary SVM classifier separating surfaces. And a bias model with delicate decision boundary is built for samples in overlapping sample space to improve the classification accuracy. Experimental results on the benchmark datasets of Yeast and Scene show that our proposed method improves the classification accuracy efficiently, compared with the basic binary SVM method and some existing well-known methods.

ジャーナルInternational Journal of Innovative Computing, Information and Control
出版ステータスPublished - 2010 4月 1

ASJC Scopus subject areas

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • 情報システム
  • 計算理論と計算数学


「An improved multi-label classification method based on svm with delicate decision boundary」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。