An irreducible rectangle tiling contains a spiral

Tomoe Motohashi*, Kouki Taniyama

*この研究の対応する著者

研究成果: Article査読

抄録

We consider a tiling of a square by finitely many tiles each of which is a rectangle. We do not assume that the tiles are mutually congruent. Such a tiling is called irreducible if for any two tiles the union of them is not a rectangle. A tiling is called generic if no four tiles meet in a point. A tilling is trivial if it has only one tile. A tile r in a generic tiling of a square is called a spiral if it is contained in the interior of the square and for each edge e of r there is a tile s adjacent to r such that the straight line containing e intersects the interior of s. We show that a nontrivial generic irreducible tiling of a square has a spiral.

本文言語English
ページ(範囲)175-184
ページ数10
ジャーナルJournal of Geometry
90
1-2
DOI
出版ステータスPublished - 2008 12月 1

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「An irreducible rectangle tiling contains a spiral」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル