An Lp theory of invariant manifolds of parabolic partial differential equations of ℝd

Kazuo Kobayashi*

*この研究の対応する著者

    研究成果: Article査読

    抄録

    We study the problem about the existence of finite-dimensional invariant manifolds for nonlinear heat equations of the form ∂u/∂τ = △u + F(u, ∇u) on ℝd × [1, ∞). We show that in spite of the fact that the linearized equation has continuous spectrum extending from negative infinity to zero, there exist finite dimensional invariant manifolds which control the long time asymptotics of solutions. We consider the problem for these equations in the framework of weighted Sobolev spaces of Lp type. The Lp theory of this problem gives the L estimate of the long-time asymptotics of solutions under natural assumptions on the nonlinear term F and their initial data.

    本文言語English
    ページ(範囲)195-212
    ページ数18
    ジャーナルJournal of Differential Equations
    179
    1
    DOI
    出版ステータスPublished - 2002 2月 10

    ASJC Scopus subject areas

    • 分析

    フィンガープリント

    「An Lp theory of invariant manifolds of parabolic partial differential equations of ℝd」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル