Analysis of gastrointestinal acoustic activity using deep neural networks

Jakub Ficek, Kacper Radzikowski, Jan Krzysztof Nowak, Osamu Yoshie, Jaroslaw Walkowiak, Robert Nowak*

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Automated bowel sound (BS) analysis methods were already well developed by the early 2000s. Accuracy of ~90% had been achieved by several teams using various analytical approaches. Clinical research on BS had revealed their high potential in the non-invasive investigation of irritable bowel syndrome to study gastrointestinal motility and in a surgical setting. This article proposes a novel methodology for the analysis of BS using hybrid convolutional and recursive neural networks. It is one of the first methods of using deep learning to be widely explored. We have developed an experimental pipeline and evaluated our results with a new dataset collected using a device with a dedicated contact microphone. Data have been collected at night-time, which is the most interesting period from a neurogastroenterological point of view. Previous works had ignored this period and instead kept brief records only during the day. Our algorithm can detect bowel sounds with an accuracy >93%. Moreover, we have achieved a very high specificity (>97%), crucial in diagnosis. The results have been checked with a medical professional, and they successfully support clinical diagnosis. We have developed a client-server system allowing medical practitioners to upload the recordings from their patients and have them analyzed online. This system is available online. Although BS research is technologically mature, it still lacks a uniform methodology, an international forum for discussion, and an open platform for data exchange, and therefore it is not commonly used. Our server could provide a starting point for establishing a common framework in BS research.

本文言語English
論文番号7602
ジャーナルSensors
21
22
DOI
出版ステータスPublished - 2021 11月 1

ASJC Scopus subject areas

  • 分析化学
  • 情報システム
  • 生化学
  • 原子分子物理学および光学
  • 器械工学
  • 電子工学および電気工学

フィンガープリント

「Analysis of gastrointestinal acoustic activity using deep neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル