Analysis of motion searching based on reliable predictability using recurrent neural network

Shun Nishide*, Tetsuya Ogata, Jun Tani, Kazunori Komatani, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Conference contribution

抄録

Reliable predictability is one of the main factors that determine human behaviors. The authors developed a model that searches and generates robot motions based on reliable predictability. Training of the model consists of three phases. In the first phase, the model trains a sequential learner, namely Recurrent Neural Network with Parametric Bias, to self-organize robot and object dynamics. In the second phase, Steepest Descent Method is utilized to search for robot motion that induces the most predictable object motion. In the third phase, a hierarchical neural network is trained to link object image with the searched motion. Experiments were conducted with cylindrical objects. Analysis of the results have shown that the robot has acquired the most reliable robot motion, shifting it according to the posture of the object. Twenty motion generation experiments have resulted in generation of robot motion that induces consistent rolling motion of the objects.

本文言語English
ホスト出版物のタイトル2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009
ページ192-197
ページ数6
DOI
出版ステータスPublished - 2009 11月 4
外部発表はい
イベント2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009 - Singapore, Singapore
継続期間: 2009 7月 142009 7月 17

出版物シリーズ

名前IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM

Conference

Conference2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009
国/地域Singapore
CitySingapore
Period09/7/1409/7/17

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Analysis of motion searching based on reliable predictability using recurrent neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル