Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation

Yuya Nakajima, Junji Seino, Hiromi Nakai

研究成果: Article査読

16 被引用数 (Scopus)

抄録

In this study, the analytical energy gradient for the spin-free infinite-order Douglas-Kroll-Hess (IODKH) method at the levels of the Hartree-Fock (HF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) is developed. Furthermore, adopting the local unitary transformation (LUT) scheme for the IODKH method improves the efficiency in computation of the analytical energy gradient. Numerical assessments of the present gradient method are performed at the HF, DFT, and MP2 levels for the IODKH with and without the LUT scheme. The accuracies are examined for diatomic molecules such as hydrogen halides, halogen dimers, coinage metal (Cu, Ag, and Au) halides, and coinage metal dimers, and 20 metal complexes, including the fourth-sixth row transition metals. In addition, the efficiencies are investigated for one-, two-, and three-dimensional silver clusters. The numerical results confirm the accuracy and efficiency of the present method.

本文言語English
論文番号244107
ジャーナルJournal of Chemical Physics
139
24
DOI
出版ステータスPublished - 2013 12月 28

ASJC Scopus subject areas

  • 物理学および天文学(全般)
  • 物理化学および理論化学

フィンガープリント

「Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル