TY - JOUR
T1 - Anti-periodic solution for utt - (σ(ux))x - Uxxt = f(x,t)
AU - Nakao, Mitsuhiro
AU - Okochi, Hiroko
PY - 1996/2/1
Y1 - 1996/2/1
N2 - Existence of a smooth anti-periodic solution for the quasilinear equation utt - (σ(ux))x - uxxt = f(x,t) in [0,π] × R with the boundary condition u(0,t) = u(π,t) = 0 is proved for a class of σ(v) including σ(v) = v/ √1 + v2, where f(x, t) is a given anti-periodic function in t.
AB - Existence of a smooth anti-periodic solution for the quasilinear equation utt - (σ(ux))x - uxxt = f(x,t) in [0,π] × R with the boundary condition u(0,t) = u(π,t) = 0 is proved for a class of σ(v) including σ(v) = v/ √1 + v2, where f(x, t) is a given anti-periodic function in t.
UR - http://www.scopus.com/inward/record.url?scp=0030080064&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030080064&partnerID=8YFLogxK
U2 - 10.1006/jmaa.1996.0054
DO - 10.1006/jmaa.1996.0054
M3 - Article
AN - SCOPUS:0030080064
SN - 0022-247X
VL - 197
SP - 796
EP - 809
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
IS - 3
ER -