Approximable dimension and acyclic resolutions

A. Koyama*, R. B. Sher

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We establish the following characterization of the approximable dimension of the metric space X with respect to the commutative ring R with identity: a-dimR X ≤ n if and only if there exist a metric space Z of dimension at most n and a proper UVn-1-mapping f : Z → X such that Ȟn(f-1(x); R) = 0 for all x ∈ X. As an application we obtain some fundamental results about the approximable dimension of metric spaces with respect to a commutative ring with identity, such as the subset theorem and the existence of a universal space. We also show that approximable dimension (with arbitrary coefficient group) is preserved under refinable mappings.

本文言語English
ページ(範囲)43-53
ページ数11
ジャーナルFundamenta Mathematicae
152
1
出版ステータスPublished - 1997 12月 1
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Approximable dimension and acyclic resolutions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル