Approximate FPGA-based multipliers using carry-inexact elementary modules

Yi Guo*, Heming Sun, Ping Lei, Shinji Kimura

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Approximate multiplier design is an effective technique to improve hardware performance at the cost of accuracy loss. The current approximate multipliers are mostly ASIC-based and are dedicated for one particular application. In contrast, FPGA has been an attractive choice for many applications because of its high performance, reconfigurability, and fast development round. This paper presents a novel methodology for designing approximate multipliers by employing the FPGA-based fabrics (primarily look-up tables and carry chains). The area and latency are significantly reduced by applying approximation on carry results and cutting the carry propagation path in the multiplier. Moreover, we explore higher-order multipliers on architectural space by using our proposed small-size approximate multipliers as elementary modules. For different accuracy-hardware requirements, eight configurations for approximate 8×8 multiplier are discussed. In terms of mean relative error distance (MRED), the error of the proposed 8×8 multiplier is as low as 1.06%. Compared with the exact multiplier, our proposed design can reduce area by 43.66% and power by 24.24%. The critical path latency reduction is up to 29.50%. The proposed multiplier design has a better accuracy-hardware tradeoff than other designs with comparable accuracy. Moreover, image sharpening processing is used to assess the efficiency of approximate multipliers on application.

本文言語English
ページ(範囲)1054-1062
ページ数9
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E103A
9
DOI
出版ステータスPublished - 2020 9月 1

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Approximate FPGA-based multipliers using carry-inexact elementary modules」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル