Approximation of doubly curved surfaces by analysis-suitable piecewise surfaces with high developability

Felix Danilo Scholz*, Soma Nishikawa, Masahito Takezawa, Takashi Maekawa

*この研究の対応する著者

研究成果: Article査読

抄録

A doubly curved surface can be approximated with a piecewise developable surface by constructing the envelope of the family of the tangent planes along given curves on the input surface. In this paper, we utilize this fact to approximate a doubly curved input surface by a piecewise ruled B-spline surface with high developability. This brings advantages to downstream applications such as ease of fabrication and ease of covering the surfaces with non-extendable materials such as film-based perovskite solar modules. We also present a method for transforming the thereby defined piecewise developable surface into a watertight B-spline geometry that can be used for numerically solving partial differential equations using isogeometric analysis. In our approach, we compute the intersection points of neighboring developable surfaces starting from the first pair and propagate the parameterization of the first intersection curve to all other pairs, thereby maintaining accuracy and developability when approximating the points with a ruled B-spline surface.

本文言語English
ジャーナルVisual Computer
DOI
出版ステータスAccepted/In press - 2022

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「Approximation of doubly curved surfaces by analysis-suitable piecewise surfaces with high developability」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル