Asymptotic behavior for linear and nonlinear elastic waves in materials with memory

R. Kirova, V. Georgiev, B. Rubino*, R. Sampalmieri, B. Yordanov

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

In this review, we study the Cauchy problem associated to the equation of linear and nonlinear viscoelasticity with memory. Our first point is the study of dispersive properties of the solution to the linear equation of viscoelasticity with memory. The decay estimates obtained in this first part are important to treat the corresponding nonlinear Cauchy problem. The key novelty is the fact that we admit algebraic singularities and decay at infinity for the time dependent functions in the memory kernel. This fact enables one to include models different from the classical viscoelasticity problem, where this kernel is smooth and exponentially decaying in time.

本文言語English
ページ(範囲)4126-4137
ページ数12
ジャーナルJournal of Non-Crystalline Solids
354
35-39
DOI
出版ステータスPublished - 2008 10月 1
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • 凝縮系物理学
  • 材料化学

フィンガープリント

「Asymptotic behavior for linear and nonlinear elastic waves in materials with memory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル