Asymptotic behavior of solutions for semilinear volterra diffusion equations with spatial inhomogeneity and advection

Yusuke Yoshida, Yoshio Yamada

    研究成果: Article査読

    抄録

    This paper is concerned with semilinear Volterra diffusion equations with spatial inhomogeneity and advection. We intend to study the effects of interaction among diffusion, advection and Volterra integral under spatially inhomogeneous environments. Since the existence and uniqueness result of global-in-time solutions can be proved in the standard manner, our main interest is to study their asymptotic behavior as t → ∞. For this purpose, we study the related stationary problem by the monotone method and establish some sufficient conditions on the existence of a unique positive solution. Its global attractivity is also studied with use of a suitable Lyapunov functional.

    本文言語English
    ページ(範囲)271-292
    ページ数22
    ジャーナルTokyo Journal of Mathematics
    39
    1
    出版ステータスPublished - 2016 6月 1

    ASJC Scopus subject areas

    • 数学 (全般)

    フィンガープリント

    「Asymptotic behavior of solutions for semilinear volterra diffusion equations with spatial inhomogeneity and advection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル