Asymptotic profile of solutions for 1-D wave equation with time-dependent damping and absorbing semilinear term

Kenji Nishihara*

*この研究の対応する著者

    研究成果: Article査読

    6 被引用数 (Scopus)

    抄録

    We consider the Cauchy problem for the wave equation with time-dependent damping and absorbing semilinear term utt-Δu+b(t)u t+|u|ρ-1u=0, (t,x)∈R+×R N, (u,ut)(0,x)=(u0,u1)(x), x∈RN. When b(t)=b0(t+1) with -1<β<1 and b0>0, we want to seek for the asymptotic profile as t→∞ of the solution u to in the supercritical case ρ>ρF(N):=1+2/N. By the weighted energy method we can show the basic decay rates of u, which are almost the same as those to the corresponding linear parabolic equation φt-1/b(t)Δφ=0, (t,x)∈R+×RN. When N=1, the decay rates of higher order derivatives of u are obtained by the energy method, so that the solution u can be regarded as that of with source term -1/b(t)(u tt+|u|ρ-1u). Thus, we will show θ 0GB(t,x) (θ0: suitable constant) to be an asymptotic profile of u, where GB(t,x) is the fundamental solution of.

    本文言語English
    ページ(範囲)185-205
    ページ数21
    ジャーナルAsymptotic Analysis
    71
    4
    DOI
    出版ステータスPublished - 2011

    ASJC Scopus subject areas

    • 数学 (全般)

    フィンガープリント

    「Asymptotic profile of solutions for 1-D wave equation with time-dependent damping and absorbing semilinear term」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル