Asymptotic Theory of Test Statistic for Sphericity of High-Dimensional Time Series

Yan Liu, Yurie Tamura*, Masanobu Taniguchi

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We consider the testing problem for the sphericity hypothesis regarding the covariance matrix based on high-dimensional time series, under the assumption that the sample size n and the dimension p satisfy Limn,p→∞ p/n = c ∈ (0, ∞). Recently, several studies on test statistics for sphericity of independent and identically distributed p-dimensional random variables have been carried out under the assumption that both n and p diverge to infinity. A test statistic for sphericity has been proved to be well behaved even when p>n. We investigate the test statistic under situations of high-dimensional time series. The asymptotic null distribution of the test statistic is shown to be standard normal distribution when the observations come from Gaussian stationary processes. In the simulation study, we illustrate the properties of the test statistic for several time series models. We apply the test to a problem of portfolio selection in our empirical study.

本文言語English
ページ(範囲)402-416
ページ数15
ジャーナルJournal of Time Series Analysis
39
3
DOI
出版ステータスPublished - 2018 5月

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性
  • 応用数学

フィンガープリント

「Asymptotic Theory of Test Statistic for Sphericity of High-Dimensional Time Series」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル