Automatic allocation of training data for rapid prototyping of speech understanding based on multiple model combination

Kazunori Komatani*, Masaki Katsumaru, Mikio Nakano, Kotaro Funakoshi, Tetsuya Ogata, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Paper査読

2 被引用数 (Scopus)

抄録

The optimal choice of speech understanding method depends on the amount of training data available in rapid prototyping. A statistical method is ultimately chosen, but it is not clear at which point in the increase in training data a statistical method become effective. Our framework combines multiple automatic speech recognition (ASR) and language understanding (LU) modules to provide a set of speech understanding results and selects the best result among them. The issue is how to allocate training data to statistical modules and the selection module in order to avoid overfitting in training and obtain better performance. This paper presents an automatic training data allocation method that is based on the change in the coefficients of the logistic regression functions used in the selection module. Experimental evaluation showed that our allocation method outperformed baseline methods that use a single ASR module and a single LU module at every point while training data increase.

本文言語English
ページ579-587
ページ数9
出版ステータスPublished - 2010
外部発表はい
イベント23rd International Conference on Computational Linguistics, Coling 2010 - Beijing, China
継続期間: 2010 8月 232010 8月 27

Conference

Conference23rd International Conference on Computational Linguistics, Coling 2010
国/地域China
CityBeijing
Period10/8/2310/8/27

ASJC Scopus subject areas

  • 言語および言語学
  • 計算理論と計算数学
  • 言語学および言語

フィンガープリント

「Automatic allocation of training data for rapid prototyping of speech understanding based on multiple model combination」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル