Automatic determination of acoustic model topology using variational Bayesian estimation and clustering

Shinji Watanabe*, Atsushi Sako, Atsushi Nakamura

*この研究の対応する著者

研究成果: Conference article査読

6 被引用数 (Scopus)

抄録

We describe the automatic determination of an acoustic model for speech recognition, which is very complicated and includes latent variables, using VBEC: Variational Bayesian Estimation and Clustering for speech recognition. We propose an efficient Gaussian Mixture Model (GMM) based phonetic decision tree construction within the VBEC framework. The proposed method features a novel approach to reduce the unrealistically large number of computations needed for iterative calculations in the GMM-based decision tree method to a practical level by assuming that each Gaussian per state has the same occupancy and is represented by the same posterior distribution for the covariance parameter. The experimental results confirmed that VBEC automatically provided a optimum model topology with the highest performance level.

本文言語English
ページ(範囲)I813-I816
ジャーナルICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
1
出版ステータスPublished - 2004 9月 28
外部発表はい
イベントProceedings - IEEE International Conference on Acoustics, Speech, and Signal Processing - Montreal, Que, Canada
継続期間: 2004 5月 172004 5月 21

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Automatic determination of acoustic model topology using variational Bayesian estimation and clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル