Automatic determination of acoustic model topology using variational bayesian estimation and clustering for large vocabulary continuous speech recognition

Shinji Watanabe*, Atsushi Sako, Atsushi Nakamura

*この研究の対応する著者

研究成果: Article査読

14 被引用数 (Scopus)

抄録

We describe the automatic determination of a large and complicated acoustic model for speech recognition by using variational Bayesian estimation and clustering (VBEC) for speech recognition. We propose an efficient method for decision tree clustering based on a Gaussian mixture model (GMM) and an efficient model search algorithm for finding an appropriate acoustic model topology within the VBEC framework. GMM-based decision tree clustering for triphone HMM states features a novel approach designed to reduce the overly large number of computations to a practical level by utilizing the statistics of monophone hidden Markov model states. The model search algorithm also reduces the search space by utilizing the characteristics of the acoustic model. The experimental results confirmed that VBEC automatically and rapidly yielded an optimum model topology with the highest performance.

本文言語English
ページ(範囲)855-872
ページ数18
ジャーナルIEEE Transactions on Audio, Speech and Language Processing
14
3
DOI
出版ステータスPublished - 2006 5月
外部発表はい

ASJC Scopus subject areas

  • 音響学および超音波学
  • 電子工学および電気工学

フィンガープリント

「Automatic determination of acoustic model topology using variational bayesian estimation and clustering for large vocabulary continuous speech recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル