抄録
Axion dark matter differentiates the phase velocities of the circular-polarized photons. In this Letter, a scheme to measure the phase difference by using a linear optical cavity is proposed. If the scheme is applied to the Fabry-Pérot arm of Advanced-LIGO-like (Cosmic-Explorer-Like) gravitational wave detector, the potential sensitivity to the axion-photon coupling constant, gaγ, reaches gaγ≃8×10-13 GeV-1(4×10-14 GeV-1) at the axion mass m≃3×10-13 eV (2×10-15 eV) and remains at around this sensitivity for three orders of magnitude in mass. Furthermore, its sensitivity has a sharp peak reaching gaγ≃10-14 GeV-1(8×10-17 GeV-1) at m=1.563×10-10 eV (1.563×10-11 eV). This sensitivity can be achieved without losing any sensitivity to gravitational waves.
本文言語 | English |
---|---|
論文番号 | 111301 |
ジャーナル | Physical Review Letters |
巻 | 123 |
号 | 11 |
DOI | |
出版ステータス | Published - 2019 9月 13 |
外部発表 | はい |
ASJC Scopus subject areas
- 物理学および天文学(全般)
フィンガープリント
「Axion dark matter search with interferometric gravitational wave detectors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。引用スタイル
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Physical Review Letters, Vol. 123, No. 11, 111301, 13.09.2019.
研究成果: Article › 査読
}
TY - JOUR
T1 - Axion dark matter search with interferometric gravitational wave detectors
AU - Nagano, Koji
AU - Fujita, Tomohiro
AU - Michimura, Yuta
AU - Obata, Ippei
N1 - Funding Information: We developed the experimental scheme to search for axionlike dark matter with the optical linear cavity used in gravitational wave detectors. Our experiment measures the production of the linear polarization component opposite to the intrinsic polarization of the incident laser beam caused by the axion-photon coupling. The experimental sensitivity is in principle limited only by quantum shot noise, and other kind of technical disturbances are irrelevant. We estimated the potential sensitivity of detectors to the axion-photon coupling in a broad mass range 10 - 16 eV ≲ m ≲ 10 - 9 eV with the experimental parameters of existing gravitational wave detector projects, such as DECIGO, CE, and aLIGO. As a result, we found that their sensitivities can reach beyond the current limit of CAST [5] with a wide axion mass range and can be competitive with other experimental proposals that were recently suggested [25–27] . Remarkably, our new scheme for axionlike dark matter search can be performed with a minor modification of the gravitational wave detector and coexist with its observation run for gravitational waves. We expect that this scheme becomes a new approach to search for axion dark matter. In this work, K. N., Y. M., and T. F. are supported by the JSPS KAKENHI Grant No. JP17J01176, JSPS Grant-in-Aid for Scientific Research (B) No. 18H01224, and Grant-in-Aid for JSPS Research Fellow No. 17J09103, respectively. [1] 1a R. D. Peccei and H. R. Quinn , Phys. Rev. Lett. 38 , 1440 ( 1977 ); PRLTAO 0031-9007 10.1103/PhysRevLett.38.1440 1b S. Weinberg , Phys. Rev. Lett. 40 , 223 ( 1978 ); PRLTAO 0031-9007 10.1103/PhysRevLett.40.223 1c F. Wilczek , Phys. Rev. Lett. 40 , 279 ( 1978 ). PRLTAO 0031-9007 10.1103/PhysRevLett.40.279 [2] 2a P. Svrcek and E. Witten , J. High Energy Phys. 06 ( 2006 ) 051 ; JHEPFG 1029-8479 10.1088/1126-6708/2006/06/051 2b A. Arvanitaki , S. Dimopoulos , S. Dubovsky , N. Kaloper , and J. March-Russell , Phys. Rev. D 81 , 123530 ( 2010 ); PRVDAQ 1550-7998 10.1103/PhysRevD.81.123530 2c L. Visinelli and S. Vagnozzi , Phys. Rev. D 99 , 063517 ( 2019 ); PRVDAQ 2470-0010 10.1103/PhysRevD.99.063517 2d J. P. Conlon , J. High Energy Phys. 05 ( 2006 ) 078 . JHEPFG 1029-8479 10.1088/1126-6708/2006/05/078 [3] 3a P. Sikivie , Phys. Rev. Lett. 51 , 1415 ( 1983 ); PRLTAO 0031-9007 10.1103/PhysRevLett.51.1415 3b M. B. Schneider , F. P. Calaprice , A. L. Hallin , D. W. MacArthur , and D. F. Schreiber , Phys. Rev. Lett. 52 , 695 ( 1984 ); PRLTAO 0031-9007 10.1103/PhysRevLett.52.695 3c G. Raffelt and L. Stodolsky , Phys. Rev. D 37 , 1237 ( 1988 ). PRVDAQ 0556-2821 10.1103/PhysRevD.37.1237 [4] 4a C. Hagmann ( ADMX Collaboration ) , Phys. Rev. Lett. 80 , 2043 ( 1998 ); PRLTAO 0031-9007 10.1103/PhysRevLett.80.2043 4b S. Moriyama , M. Minowa , T. Namba , Y. Inoue , Y. Takasu , and A. Yamamoto , Phys. Lett. B 434 , 147 ( 1998 ); PYLBAJ 0370-2693 10.1016/S0370-2693(98)00766-7 4c T. M. Shokair , Int. J. Mod. Phys. A 29 , 1443004 ( 2014 ); IMPAEF 0217-751X 10.1142/S0217751X14430040 4d B. T. McAllister , G. Flower , E. N. Ivanov , M. Goryachev , J. Bourhill , and M. E. Tobar , Phys. Dark Universe 18 , 67 ( 2017 ); PDUHA3 2212-6864 10.1016/j.dark.2017.09.010 4e D. Horns , J. Jaeckel , A. Lindner , A. Lobanov , J. Redondo , and A. Ringwald , J. Cosmol. Astropart. Phys. 04 ( 2013 ) 016 ; JCAPBP 1475-7516 10.1088/1475-7516/2013/04/016 4f A. Caldwell , G. Dvali , B. Majorovits , A. Millar , G. Raffelt , J. Redondo , O. Reimann , F. Simon , and F. Steffen ( MADMAX Working Group ) , Phys. Rev. Lett. 118 , 091801 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.091801 [5] 5a K. Zioutas ( CAST Collaboration ) , Phys. Rev. Lett. 94 , 121301 ( 2005 ); PRLTAO 0031-9007 10.1103/PhysRevLett.94.121301 5b V. Anastassopoulos ( CAST Collaboration ) , Nat. Phys. 13 , 584 ( 2017 ). NPAHAX 1745-2473 10.1038/nphys4109 [6] 6 J. K. Vogel , arXiv:1302.3273 . [7] 7a K. Ehret ( ALPS Collaboration ) , Nucl. Instrum. Methods Phys. Res., Sect. A 612 , 83 ( 2009 ); NIMAER 0168-9002 10.1016/j.nima.2009.10.102 7b R. Bähre , J. Instrum. 8 , T09001 ( 2013 ). JIONAS 1748-0221 10.1088/1748-0221/8/09/T09001 [8] 8 M. Betz , F. Caspers , M. Gasior , M. Thumm , and S. W. Rieger , Phys. Rev. D 88 , 075014 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.075014 [9] 9 H. Tam and Q. Yang , Phys. Lett. B 716 , 435 ( 2012 ). PYLBAJ 0370-2693 10.1016/j.physletb.2012.08.050 [10] 10 P. Sikivie , N. Sullivan , and D. B. Tanner , Phys. Rev. Lett. 112 , 131301 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.112.131301 [11] 11 Y. Kahn , B. R. Safdi , and J. Thaler , Phys. Rev. Lett. 117 , 141801 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.141801 [12] 12 M. Silva-Feaver , IEEE Trans. Appl. Supercond. 27 , 1 ( 2017 ). ITASE9 1051-8223 10.1109/TASC.2016.2631425 [13] 13a J. W. Brockway , E. D. Carlson , and G. G. Raffelt , Phys. Lett. B 383 , 439 ( 1996 ); PYLBAJ 0370-2693 10.1016/0370-2693(96)00778-2 13b J. A. Grifols , E. Massó , and R. Toldrà , Phys. Rev. Lett. 77 , 2372 ( 1996 ). PRLTAO 0031-9007 10.1103/PhysRevLett.77.2372 [14] 14 A. Payez , C. Evoli , T. Fischer , M. Giannotti , A. Mirizzi , and A. Ringwald , J. Cosmol. Astropart. Phys. 02 ( 2015 ) 006 . JCAPBP 1475-7516 10.1088/1475-7516/2015/02/006 [15] 15a D. Wouters and P. Brun , Phys. Rev. D 86 , 043005 ( 2012 ); PRVDAQ 1550-7998 10.1103/PhysRevD.86.043005 15b D. Wouters and P. Brun , Astrophys. J. 772 , 44 ( 2013 ); ASJOAB 0004-637X 10.1088/0004-637X/772/1/44 15c A. Abramowski ( H.E.S.S. Collaboration ) , Phys. Rev. D 88 , 102003 ( 2013 ); PRVDAQ 1550-7998 10.1103/PhysRevD.88.102003 15d J. P. Conlon , A. J. Powell , and M. C. David Marsh , Phys. Rev. D 93 , 123526 ( 2016 ); PRVDAQ 2470-0010 10.1103/PhysRevD.93.123526 15e M. Ajello ( Fermi-LAT Collaboration ) , Phys. Rev. Lett. 116 , 161101 ( 2016 ); PRLTAO 0031-9007 10.1103/PhysRevLett.116.161101 15f M. Berg , J. P. Conlon , F. Day , N. Jennings , S. Krippendorf , A. J. Powell , and M. Rummel , Astrophys. J. 847 , 101 ( 2017 ). ASJOAB 0004-637X 10.3847/1538-4357/aa8b16 [16] 16 M. C. D. Marsh , H. R. Russell , A. C. Fabian , B. R. McNamara , P. Nulsen , and C. S. Reynolds , J. Cosmol. Astropart. Phys. 12 ( 2017 ) 036 . JCAPBP 1475-7516 10.1088/1475-7516/2017/12/036 [17] 17 J. P. Conlon , F. Day , N. Jennings , S. Krippendorf , and F. Muia , Mon. Not. R. Astron. Soc. 473 , 4932 ( 2018 ). MNRAA4 0035-8711 10.1093/mnras/stx2652 [18] 18a F. Aharonian ( H.E.S.S Collaboration ) , Astron. Astrophys. 475 , L9 ( 2007 ); AAEJAF 0004-6361 10.1051/0004-6361:20078462 18b J. Albert ( MAGIC Collaboration ) , Science 320 , 1752 ( 2008 ); SCIEAS 0036-8075 10.1126/science.1157087 18c A. De Angelis , M. Roncadelli , and O. Mansutti , Phys. Rev. D 76 , 121301(R) ( 2007 ); PRVDAQ 1550-7998 10.1103/PhysRevD.76.121301 18d D. Horns and M. Meyer , J. Cosmol. Astropart. Phys. 02 ( 2012 ) 033 ; JCAPBP 1475-7516 10.1088/1475-7516/2012/02/033 18e M. Meyer , D. Horns , and M. Raue , Phys. Rev. D 87 , 035027 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.87.035027 [19] 19a J. P. Conlon and M. C. David Marsh , Phys. Rev. Lett. 111 , 151301 ( 2013 ); PRLTAO 0031-9007 10.1103/PhysRevLett.111.151301 19b S. Angus , J. P. Conlon , M. C. D. Marsh , A. J. Powell , and L. T. Witkowski , J. Cosmol. Astropart. Phys. 09 ( 2014 ) 026 . JCAPBP 1475-7516 10.1088/1475-7516/2014/09/026 [20] 20 K. Kohri and H. Kodama , Phys. Rev. D 96 , 051701(R) ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.051701 [21] 21 T. Moroi , K. Nakayama , and Y. Tang , Phys. Lett. B 783 , 301 ( 2018 ). PYLBAJ 0370-2693 10.1016/j.physletb.2018.07.002 [22] 22 A. Caputo , arXiv:1902.02695 . [23] 23a A. G. Dias , A. C. B. Machado , C. C. Nishi , A. Ringwald , and P. Vaudrevange , J. High Energy Phys. 06 ( 2014 ) 037 ; JHEPFG 1029-8479 10.1007/JHEP06(2014)037 23b P. W. Graham , I. G. Irastorza , S. K. Lamoreaux , A. Lindner , and K. A. van Bibber , Annu. Rev. Nucl. Part. Sci. 65 , 485 ( 2015 ); ARPSDF 0163-8998 10.1146/annurev-nucl-102014-022120 23c I. G. Irastorza and J. Redondo , Prog. Part. Nucl. Phys. 102 , 89 ( 2018 ); PPNPDB 0146-6410 10.1016/j.ppnp.2018.05.003 23d M. Y. Khlopov , Int. J. Mod. Phys. D 27 , 1841013 ( 2018 ). IMPDEO 0218-2718 10.1142/S0218271818410134 [24] 24 A. C. Melissinos , Phys. Rev. Lett. 102 , 202001 ( 2009 ). PRLTAO 0031-9007 10.1103/PhysRevLett.102.202001 [25] 25 W. DeRocco and A. Hook , Phys. Rev. D 98 , 035021 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.98.035021 [26] 26 I. Obata , T. Fujita , and Y. Michimura , Phys. Rev. Lett. 121 , 161301 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.121.161301 [27] 27 H. Liu , B. D. Elwood , M. Evans , and J. Thaler , Phys. Rev. D 100 , 023548 ( 2019 ). PRVDAQ 2470-0010 10.1103/PhysRevD.100.023548 [28] 28a S. M. Carroll , G. B. Field , and R. Jackiw , Phys. Rev. D 41 , 1231 ( 1990 ); PRVDAQ 0556-2821 10.1103/PhysRevD.41.1231 28b S. M. Carroll , Phys. Rev. Lett. 81 , 3067 ( 1998 ). PRLTAO 0031-9007 10.1103/PhysRevLett.81.3067 [29] 29a A. Andrianov , D. Espriu , F. Mescia , and A. Renau , Phys. Lett. B 684 , 101 ( 2010 ); PYLBAJ 0370-2693 10.1016/j.physletb.2010.01.005 29b D. Espriu and A. Renau , Phys. Rev. D 85 , 025010 ( 2012 ); PRVDAQ 1550-7998 10.1103/PhysRevD.85.025010 29c T. Fujita , R. Tazaki , and K. Toma , Phys. Rev. Lett. 122 , 191101 ( 2019 ). PRLTAO 0031-9007 10.1103/PhysRevLett.122.191101 [30] 30 J. Aasi , Classical Quantum Gravity 32 , 074001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/7/074001 [31] 31 F. Acernese , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [32] 32a K. Somiya , Classical Quantum Gravity 29 , 124007 ( 2012 ); CQGRDG 0264-9381 10.1088/0264-9381/29/12/124007 32b Y. Aso , Y. Michimura , K. Somiya , M. Ando , O. Miyakawa , T. Sekiguchi , D. Tatsumi , and H. Yamamoto , Phys. Rev. D 88 , 043007 ( 2013 ); PRVDAQ 1550-7998 10.1103/PhysRevD.88.043007 32c T. Akutsu , Prog. Theor. Exp. Phys. ( 2018 ), 013F01 . PTEPCR 2050-3911 10.1093/ptep/ptx180 [33] 33 M. Punturo , Classical Quantum Gravity 27 , 194002 ( 2010 ). CQGRDG 0264-9381 10.1088/0264-9381/27/19/194002 [34] 34 B. P. Abbott , Classical Quantum Gravity 34 , 044001 ( 2017 ). CQGRDG 0264-9381 10.1088/1361-6382/aa51f4 [35] 35 S. Kawamura , J. Phys. Conf. Ser. 120 , 032004 ( 2008 ). JPCSDZ 1742-6588 10.1088/1742-6596/120/3/032004 [36] 36a R. Brito , S. Ghosh , E. Barausse , E. Berti , V. Cardoso , I. Dvorkin , A. Klein , and P. Pani , Phys. Rev. Lett. 119 , 131101 ( 2017 ); PRLTAO 0031-9007 10.1103/PhysRevLett.119.131101 36b N. Kitajima , J. Soda , and Y. Urakawa , J. Cosmol. Astropart. Phys. 10 ( 2018 ) 008 ; JCAPBP 1475-7516 10.1088/1475-7516/2018/10/008 36c C. S. Machado , W. Ratzinger , P. Schwaller , and B. A. Stefanek , J. High Energy Phys. 01 ( 2019 ) 053 . JHEPFG 1029-8479 10.1007/JHEP01(2019)053 [37] 37 A. Yariv and P. Yeh , Photonics: Optical Electronics in Modern Communications ( Oxford University Press , Oxford, 2007 ). [38] 38 R. W. P. Drever , J. L. Hall , F. V. Kowalski , J. Hough , G. M. Ford , A. J. Munley , and H. Ward , Appl. Phys. B 31 , 97 ( 1983 ). APPCDL 0721-7269 10.1007/BF00702605 [39] 39 A. J. Millar , G. G. Raffelt , J. Redondo , and F. D. Steffen , J. Cosmol. Astropart. Phys. 01 ( 2017 ) 061 . JCAPBP 1475-7516 10.1088/1475-7516/2017/01/061 [40] 40 H. J. Kimble , Y. Levin , A. B. Matsko , K. S. Thorne , and S. P. Vyatchanin , Phys. Rev. D 65 , 022002 ( 2001 ). PRVDAQ 0556-2821 10.1103/PhysRevD.65.022002 [41] 41 D. Budker , P. W. Graham , M. Ledbetter , S. Rajendran , and A. O. Sushkov , Phys. Rev. X 4 , 021030 ( 2014 ). PRXHAE 2160-3308 10.1103/PhysRevX.4.021030 [42] 42 R. W. P. Drever , Publisher Copyright: © 2019 authors. Published by the American Physical Society.
PY - 2019/9/13
Y1 - 2019/9/13
N2 - Axion dark matter differentiates the phase velocities of the circular-polarized photons. In this Letter, a scheme to measure the phase difference by using a linear optical cavity is proposed. If the scheme is applied to the Fabry-Pérot arm of Advanced-LIGO-like (Cosmic-Explorer-Like) gravitational wave detector, the potential sensitivity to the axion-photon coupling constant, gaγ, reaches gaγ≃8×10-13 GeV-1(4×10-14 GeV-1) at the axion mass m≃3×10-13 eV (2×10-15 eV) and remains at around this sensitivity for three orders of magnitude in mass. Furthermore, its sensitivity has a sharp peak reaching gaγ≃10-14 GeV-1(8×10-17 GeV-1) at m=1.563×10-10 eV (1.563×10-11 eV). This sensitivity can be achieved without losing any sensitivity to gravitational waves.
AB - Axion dark matter differentiates the phase velocities of the circular-polarized photons. In this Letter, a scheme to measure the phase difference by using a linear optical cavity is proposed. If the scheme is applied to the Fabry-Pérot arm of Advanced-LIGO-like (Cosmic-Explorer-Like) gravitational wave detector, the potential sensitivity to the axion-photon coupling constant, gaγ, reaches gaγ≃8×10-13 GeV-1(4×10-14 GeV-1) at the axion mass m≃3×10-13 eV (2×10-15 eV) and remains at around this sensitivity for three orders of magnitude in mass. Furthermore, its sensitivity has a sharp peak reaching gaγ≃10-14 GeV-1(8×10-17 GeV-1) at m=1.563×10-10 eV (1.563×10-11 eV). This sensitivity can be achieved without losing any sensitivity to gravitational waves.
UR - http://www.scopus.com/inward/record.url?scp=85072732575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072732575&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.123.111301
DO - 10.1103/PhysRevLett.123.111301
M3 - Article
C2 - 31573257
AN - SCOPUS:85072732575
SN - 0031-9007
VL - 123
JO - Physical Review Letters
JF - Physical Review Letters
IS - 11
M1 - 111301
ER -