Balanced generalized lower bound inequality for simplicial polytopes

Martina Juhnke-Kubitzke, Satoshi Murai*

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

A remarkable and important property of face numbers of simplicial polytopes is the generalized lower bound inequality, which says that the h-numbers of any simplicial polytope are unimodal. Recently, for balanced simplicial d-polytopes, that is simplicial d-polytopes whose underlying graphs are d-colorable, Klee and Novik proposed a balanced analogue of this inequality, that is stronger than just unimodality. The aim of this article is to prove this conjecture of Klee and Novik. For this, we also show a Lefschetz property for rank-selected subcomplexes of balanced simplicial polytopes and thereby obtain new inequalities for their h-numbers.

本文言語English
ページ(範囲)1677-1689
ページ数13
ジャーナルSelecta Mathematica, New Series
24
2
DOI
出版ステータスPublished - 2018 4月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 物理学および天文学(全般)

フィンガープリント

「Balanced generalized lower bound inequality for simplicial polytopes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル