Banknote portrait detection using convolutional neural network

Ryutaro Kitagawa, Yoshihiko Mochizuki, Satoshi Iizuka, Edgar Simo-Serra, Hiroshi Matsuki, Naotake Natori, Hiroshi Ishikawa

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

Banknotes generally have different designs according to their denominations. Thus, if characteristics of each design can be recognized, they can be used for sorting banknotes according to denominations. Portrait in banknotes is one such characteristic that can be used for classification. A sorting system for banknotes can be designed that recognizes portraits in each banknote and sort it accordingly. In this paper, our aim is to automate the configuration of such a sorting system by automatically detect portraits in sample banknotes, so that it can be quickly deployed in a new target country. We use Convolutional Neural Networks to detect portraits in completely new set of banknotes robust to variation in the ways they are shown, such as the size and the orientation of the face.

本文言語English
ホスト出版物のタイトルProceedings of the 15th IAPR International Conference on Machine Vision Applications, MVA 2017
出版社Institute of Electrical and Electronics Engineers Inc.
ページ440-443
ページ数4
ISBN(電子版)9784901122160
DOI
出版ステータスPublished - 2017 7月 19
イベント15th IAPR International Conference on Machine Vision Applications, MVA 2017 - Nagoya, Japan
継続期間: 2017 5月 82017 5月 12

出版物シリーズ

名前Proceedings of the 15th IAPR International Conference on Machine Vision Applications, MVA 2017

Other

Other15th IAPR International Conference on Machine Vision Applications, MVA 2017
国/地域Japan
CityNagoya
Period17/5/817/5/12

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Banknote portrait detection using convolutional neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル