Biped Robot Terrain Adaptability Based on Improved SAC Algorithm

Yilin Zhang*, Jianan Xie, Xiaohan Du, Huimin Sun, Shanshan Wang, Kenji Hashimoto

*この研究の対応する著者

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This study introduces an improved Soft Actor-Critic (SAC) algorithm designed to improve the gait stability of biped robots in complex terrain conditions. The core innovations lie in the redesign of the network model and the creation of a tailored reward function. The network model revision enhances the learning process and responsiveness of the robot to varied terrain conditions, while the customized reward function ensures effective adaptation and stability maintenance. Experimental results show that biped robots using our advanced learning model exhibit substantial improvements in stability while navigating complex terrains, compared to those employing traditional methods. These improvements significantly increase the robustness and adaptability of the algorithm, enabling it to effectively meet diverse environmental challenges. This research marks a significant step forward in the development of advanced and reliable biped robot systems, emphasizing the power of deep reinforcement learning to transcend the limitations of conventional robotic control approaches, especially in complex environmental interactions.

本文言語English
ホスト出版物のタイトルProceedings of MSR-RoManSy 2024 - Combined IFToMM Symposium of RoManSy and USCToMM Symposium on Mechanical Systems and Robotics
編集者Pierre Larochelle, J. Michael McCarthy, Craig P. Lusk
出版社Springer Science and Business Media B.V.
ページ93-104
ページ数12
ISBN(印刷版)9783031606175
DOI
出版ステータスPublished - 2024
イベントJoint Mechanical Systems and Robotics and RoManSy Symposium, MSR-RoManSy 2024 - Saint Petersburg, United States
継続期間: 2024 5月 222024 5月 25

出版物シリーズ

名前Mechanisms and Machine Science
159 MMS
ISSN(印刷版)2211-0984
ISSN(電子版)2211-0992

Conference

ConferenceJoint Mechanical Systems and Robotics and RoManSy Symposium, MSR-RoManSy 2024
国/地域United States
CitySaint Petersburg
Period24/5/2224/5/25

ASJC Scopus subject areas

  • 材料力学
  • 機械工学

フィンガープリント

「Biped Robot Terrain Adaptability Based on Improved SAC Algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル