Blind PSNR Estimation of Compressed Video Sequences Supported by Machine Learning

Takahiro Kumekawa, Masahiro Wakabayashi, Jiro Katto, Naofumi Wada

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The peak signal-to-noise ratio (PSNR) used as an index of image quality usually requires original images, but this is difficult for consumer generated content such as videos on YouTube. Therefore, we developed two blind PSNR estimation methods without bit-stream analysis in which multiple support vector machines are prepared to learn differently encoded images in PSNR; using an entire frame and dividing the frame into two areas. We confirmed that higher estimation accuracy is possible for the latter method against that using the entire frame.

本文言語English
ページ(範囲)353-361
ページ数9
ジャーナルITE Transactions on Media Technology and Applications
2
4
DOI
出版ステータスPublished - 2014

ASJC Scopus subject areas

  • 信号処理
  • メディア記述
  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「Blind PSNR Estimation of Compressed Video Sequences Supported by Machine Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル