Bowed string sequence estimation of a violin based on adaptive audio signal classification and context-dependent error correction

Akira Maezawa*, Katsutoshi Itoyama, Toru Takahashi, Tetsuya Ogata, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

The sequence of strings played on a bowed string instrument is essential to understanding of the fingering. Thus, its estimation is required for machine understanding of violin playing. Audio-based identification is the only viable way to realize this goal for existing music recordings. A naïve implementation using audio classification alone, however, is inaccurate and is not robust against variations in string or instruments. We develop a bowed string sequence estimation method by combining audio-based bowed string classification and context-dependent error correction. The robustness against different setups of instruments improves by normalizing the F0-dependent features using the average feature of a recording. The performance of error correction is evaluated using an electric violin with two different brands of strings and and an acoustic violin. By incorporating mean normalization, the recognition error of recognition accuracy due to changing the string alleviates by 8 points, and that due to change of instrument by 12 points. Error correction decreases the error due to change of string by 8 points and that due to different instrument by 9 points.

本文言語English
ホスト出版物のタイトルISM 2009 - 11th IEEE International Symposium on Multimedia
ページ9-16
ページ数8
DOI
出版ステータスPublished - 2009 12月 1
外部発表はい
イベント11th IEEE International Symposium on Multimedia, ISM 2009 - San Diego, CA, United States
継続期間: 2009 12月 142009 12月 16

出版物シリーズ

名前ISM 2009 - 11th IEEE International Symposium on Multimedia

Conference

Conference11th IEEE International Symposium on Multimedia, ISM 2009
国/地域United States
CitySan Diego, CA
Period09/12/1409/12/16

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • ハードウェアとアーキテクチャ
  • ソフトウェア

フィンガープリント

「Bowed string sequence estimation of a violin based on adaptive audio signal classification and context-dependent error correction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル