Bracket formulations and energy- and helicity-preserving numerical methods for incompressible two-phase flows

Yukihito Suzuki

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A diffuse interface model for three-dimensional viscous incompressible two-phase flows is formulated within a bracket formalism using a skew-symmetric Poisson bracket together with a symmetric negative semi-definite dissipative bracket. The budgets of kinetic energy, helicity, and enstrophy derived from the bracket formulations are properly inherited by the finite difference equations obtained by invoking the discrete variational derivative method combined with the mimetic finite difference method. The Cahn–Hilliard and Allen–Cahn equations are employed as diffuse interface models, in which the equalities of densities and viscosities of two different phases are assumed. Numerical experiments on the motion of periodic arrays of tubes and those of droplets have been conducted to examine the properties and usefulness of the proposed method.

本文言語English
ページ(範囲)64-97
ページ数34
ジャーナルJournal of Computational Physics
356
DOI
出版ステータスPublished - 2018 3月 1

ASJC Scopus subject areas

  • 物理学および天文学(その他)
  • コンピュータ サイエンスの応用

フィンガープリント

「Bracket formulations and energy- and helicity-preserving numerical methods for incompressible two-phase flows」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル