抄録
In this paper, we present a novel statistical machine translation method which employs a BTG-based reordering model during decoding. BTG-based reordering models for preordering have been widely explored, aiming to improve the standard phrase-based statistical machine translation system. Less attention has been paid to incorporating such a reordering model into decoding directly. Our reordering model differs from previous models built using a syntactic parser or directly from annotated treebanks. Here, we train without using any syntactic information. The experiment results on an English-Japanese translation task show that our BTG-based decoder achieves comparable or better performance than the more complex state-of-the-art SMT decoders.
本文言語 | English |
---|---|
ページ | 114-123 |
ページ数 | 10 |
出版ステータス | Published - 2019 |
イベント | 31st Pacific Asia Conference on Language, Information and Computation, PACLIC 2017 - Cebu City, Philippines 継続期間: 2017 11月 16 → 2017 11月 18 |
Conference
Conference | 31st Pacific Asia Conference on Language, Information and Computation, PACLIC 2017 |
---|---|
国/地域 | Philippines |
City | Cebu City |
Period | 17/11/16 → 17/11/18 |
ASJC Scopus subject areas
- 言語および言語学
- コンピュータ サイエンス(その他)